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What is variational analysis?

What is 4D VAR?  What good is it?
� Variational analysis: vary control parameters to 

adjust system to optimal state. 
Control system: NWP model
Control parameters: ICs, physical parameters
Optimal state: Minimal forecast errors (cost function).

� 4D VAR: apply variational analysis to minimize a 
defined cost function over space and time.

� Application: Find an optimal estimate of ICs or 
parameters, which is internally consistent between 
model dynamics and observations.



� A minimization 
algorithm seeks a 
stationary point:  
evaluate cost function 
and its gradient

� An adjoint integration 
efficiently evaluates   
cost function gradient.

What are minimization and adjoint?

Adjoint sensitivity
analysis

Nonlinear Forecast

ICs & parameters Error (cost ftn)

Stationary point



Challenge: Discontinuous physics

� Discontinuous physics 
� discontinuous cost 
function.

� Past approach: smooth 
discontinuities in 
physics.

� Smoothing introduces 
many additional local 
minima.

Cost function curve

Time filter coefficient

(NCEP diabatic model)



Goals of my research

� Answer questions:
– Can an adjoint correctly evaluate the cost function 

gradient when model physics are discontinuous?
– Can a minimization algorithm designed for 

differentiable functions work for a discontinuous cost 
function? Do we have a better solution?

� Construct a variational analysis system with the 
NCEP global spectral diabatic model

� Carry out experiments on data assimilation and 
parameter fitting by 4D VAR approach.



Outline

� Review of classical approach to variational analysis
– Lagrange multiplier solves a constrained problem (Sasaki 1958)
– Optimal control theory (LeDimet & Talagrand 1986)
– Perturbation analysis (PA) approach to derive the gradient of the 

cost function (J)
– Newton and quasi-Newton minimization algorithms.

� Answers for problems introduced by physics
– New insight (rather than using PA) between adjoint and gradient:

Adjoint of discon. physics does work for deriving the gradient of J.
– Limited Memory Quasi-Newton method (L-BFGS) usually works 

for minimizing J on discon. physics but sometimes has problems.
– Bundle method for discontinuous functions is better but slow.
– Optimal ICs and parameters improve forecasts just for 3 days.

� Future work



Optimal control problem

� Let x =column vector of all        
model variables
Let ββββ =column vector of model 
parameters

� Let        = F(x ,ββββ) =NWP model

� F(x ,ββββ ) is discontinuous when 
parameterized physics are 
included

� Let J(x) = specified error 
measurement in a time window 
(cost function)

� Problem: Find  x at t=0 and ββββ
that minimize J

Example: Forecast (solid),
observation (dashed)

∂ x—∂ t



Sasaki (1958): Lagrange multiplier 
method for constrained problem
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� Lagrange multiplier method 
constructs a new expression, 
Lagrangian,

� Seek the stationary point              
of the Lagrangian by solving  
Euler-Lagrange equations
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•Too many equations
• Poor convergence
• Too expensive computationally



Le Dimet & Talagrand (1986):
Adjoint technique to derive gradient by PA

� Cost function depends on control variable, αααα=(x0,ββββ), with  
numerical model as bridge:

� Since  δJ = <∇|αααα J, δ αααα>,  ∇|αααα J = L* W (x − x0), where     

L* = adjoint of matrix L

� With the gradient, a minimization algorithm (popularly 

L-BFGS) can iterate to solve for optimal values of control 
variables
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Newton and quasi-Newton minimization 
algorithms

� Solve Newton zero roots as an 
optimal step size (Newton method)

� Iteratively refine the approximation 
for the inverse of Hessian matrix 
(quasi-Newton method, L-BFGS)

� Line search to determine optimal 
stepsize
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Steps to develop adjoint

� Code and test TLM: compare x(αααα+δαααα)-x(αααα) and L δαααα
� Code and test adjoint: compare J(αααα+δαααα)-J(αααα) and grad(J) δαααα
� TLM and adjoint tests by PA fail with discont.  physics                    

Ex: Asselin Filter:         

01.0=∆ Aα

nAAA ×∆+= ααα 0

J of adiabatic model

J of diabatic model

Time filter coefficient αA
0.8 1.0

0.7 0.9

Ã(t)= Ã(t-1)+

ε[Ã(t-1)-2A(t)+A(t+1)]

αA=1-2ε



TLM test and gradient test of adjoint 
based on perturbation analysis
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� Compute {x(αααα+ β δαααα) − x(αααα)} / L β δαααα

� Compute {J(αααα+ β δαααα) − J(αααα)} / grad(J) β δαααα
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Example of discontinuities in a simplified 
Arakawa-Schubert cumulus parameterization

� Conditional instability defines 
updraft originating level; cloud 
base at lifting condensation level; 
cloud top where parcel      equals 
environment       

� 150 hPa is threshold for updraft 
layer and cloud thickness 

� Check diabatic model behavior                             

x(αααα+δαααα) − x(αααα) for initial field on  

1 Nov 1995

� Choose column where initial 
cumulus is turned off after small 
change in   profile

seθ profile

seθ
seθ

seθ

updraft ori
level

surface

cloud 
base

cloud 
top

A-S schematic diagram
for one cloud type



Example of discontinuities in a simplified 
Arakawa-Schubert cumulus parameterization

� Example: column 212, latitude 
circle 39, time step 3

� Updraft depth: 154 hPa when 
level 2 is the updraft originating 
level; 68 hPa for level 4

� Any small perturbation may 
cause cumulus to be turned 
on/off suddenly

� Model response jumps

Enlarged view
near surface

Moist static energy

Level 2
Level 4



J(α)=�w[f(T,q)-fobs]2, f = Arakawa-Sch. parameterization 
T=T3.75

o
N+α(T1.875

o
N -T3.75

o
N) (28 levels ×384 columns)

by α =0.8+ 0.001×n and fobs=f(T1.875
o

N ,  q 1.875
o

N) on 11/01/95

J(α)

α0.80 1.20

0

-5

-35



Character of cost function with 
discontinuous physics: Simple model
� The cost function, J, is piecewise differentiable due to 

piecewise differentiable source term (physics). 
� For k thresholds and n time steps, max number of 

differentiable segments of J is k·2n
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n=1

n=2

n=3

n=4

J

x0-1.0 3.0

f1(x) = 2x-2, f2(x) = x-4,
xc = 1, dt = 0.1.

Cost function:
J = x2(tn)



Character of cost function with
discontinuous physics: Real model
� A real numerical model is an extension of the single-

variable model on grids and variables

Adiabatic J(Filter coeff)

Diabatic J(Filter coeff)

Adiabatic J(H diff coeff)

Diabatic J(H diff coeff)

αA αHD



Can adjoint of discontinuous physics 
find cost function gradient? Theory:
� Gradient of J of a single-variable model w.r.t. IC is 

evaluated by chain rule of differentiation, and every 
integration time step forms a sub-function:

� For multi-variable models, expanding the chain rule forms 
the integration of an adjoint model:
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Can adjoint of discontinuous physics 
find cost function gradient?  Yes.

Gradient of J Gradient of J

Cost function, J Cost function, J

Time filter coeff αA Horiz. diff coeff.αHD



� L-BFGS algorithm can usually find the stationary point of J 
with the correct gradient evaluated from the adjoint.

� The stationary point may not be the global minimum.

J(Filter coeff) J(hor diff coeff)
adiabatic

diabatic

adiabatic

diabatic

Can quasi-Newton algorithm minimize a 
piecewise differentiable J?  Often yes.



Can quasi-Newton algorithm minimize a 
piecewise differentiable J?  Often yes.
� Rough curve = actual cost function
� Smooth curve = integral of gradient. Similar minima.
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L-BFGS algorithm (quasi-Newton) minimizes 
piecewise differentiable J for 282 of 300 ICs.

=∂
∂

t
x 1,22 <− xx

1,4 ≥− xx

Integrate forward
4 steps with dt = 0.1

Cost function:
J = x2 at t4

Successful minimization of J
starting from 4 different ICs

x0 x0

x0 x0

xmin xmin

J curve
Min route

Test case:



One example from the 18 failed cases:
Same equations, different initial guess for x0

� Minimization trapped by discontinuity

� Algorithm works if jump size reduced.

x0

J curve

minimization route

iteration number

2

0

5

14

3

∗

minimum



Smoothing the discontinuity

� Remove discontinuity in a simple model using smooth ftn.

� Smoothing introduces extra stationary points for J.

0.5{1+tanh[h(x)]}

J

grad(J)

x x0xc=1

f1(x)=2x-2

f 2(x)= x-4

∂x—
∂t = { f1(x),  x<xc

f2(x),  x≥xc



Impact of smoothing: L-BFGS finds 
minimum in only 263 of 300, 37 failures.

Same 4 ICs as in previous example:
Now trouble.

x0 x0

J
min route



Can we do better?  Test piecewise-
differentiable “bundle” algorithm
� Test: J = �w[f(guess) - f(truth)]2}
� Take fi = shallow convection operator

Discontinuities: conditional instability defines cloud 
base (lifting condensation level) and cloud top (highest 
instability level); different diffusion coefficients for 
different layers.

� Truth = T & q profiles for column 111 at 12N, 1 July 1995
� Initial guess = T & q profile for some other column at 12N 

or 12S.  Try each column.
� Iterate to minimize J (to 0) using L-BFGS or bundle method

� Bundle method uses a bundle of gradients (side-grad) to 
construct a sub-gradient to force J to decrease.

� L-BFGS fails for 3 of 383 columns.  Bundle method works 
for all, but computational cost almost double.



Tracing the route of minimization
with L-BFGS for temperature profile

True T prof

initial guess

step 2

step 3
step 4



Tracing the route of minimization
with bundle method for temperature profile

True T prof

initial guess

step 2

step 3 step4



Tracing the route of minimization
with L-BFGS for q profile



Tracing the route of minimization with bundle 
method for q profile



Decreases of J & ∇J for L-BFGS and 
bundle method



Performance of L-BFGS algorithm
with ICs for NCEP global spectral model
� Both discontinuity and nonlinearity introduced by 

parameterized physics affect decrease rate of J

|grad(J)|

J

Iteration number 50

Diabatic

Adiabatic

Diabatic

Adiab.



Change of RMSE with forecasting time
(out to 5 days)

Adiabatic
Control

Diabatic

Optimal

Divergence Vorticity

Virtual temp Spec humidity



Vertical distribution of RMSE reduction 
at 24-h (solid line) & 48-h (dashed line)

Percent Reduction

Div Vort

Virtual T Spec humidity

10

10 10

10



Vorticity distribution at sigma=0.8838 over 
(0E,20N) to (60E,60N) at 6h & 30h forecasts



Summary: Can adjoint correctly evaluate 
grad(J) when physics are discontinuous?
� Cost function, J, of parameterized physics is 

piecewise differentiable. Max number of 
differentiable pieces is k·2n for k thresholds and n-
step integration, so J becomes rough very fast with 
more thresholds and time steps.

� Perturbation analysis approach is invalid when a 
perturbation crosses a discontinuity.

� Adjoint integration is an implementation of the 
chain rule for differentiation of a complex model, 
which correctly evaluates gradients (or one-sided 
gradients) of a piecewise differentiable J.



Summary: Can Newton’s method  

minimize discontinuous cost functions?
� L-BFGS method (Newton variant) often works 

well to minimize J, but stationary point may not be  
global minimum, and even sometimes fails.

� Bundle method better but twice as slow.

About 4D VAR:

� Optimal parameter values found by 4D VAR 
reduce forecast errors only out to 3 days. 
– Imperfect models: affect optimality of  ICs and 

parameters for forecasts beyond optimization interval.

– Uncertainty: intrinsic loss of predictability with 
increasing fcst leading time, particularly at small-scales.



Future Work: Classical 4D VAR

� Evaluate new physical parameterizations by 
checking cost function and its sensitivity.

� Test bundle method to minimize cost function for 
entire model.



My Future Work: Data assimilation for 
ensemble forecasting (Anderson ‘99)
� Given a set of observations, a Monte Carlo 

implementation of fully non-linear filter solves for  
a probability distribution of ICs, instead of seeking 
a single ‘best’ estimate of ICs.

� Extending the application to realistic model 
promises to enhance significantly the quality of 
ensemble forecasts over a range of spatial and 
temporal scales. 

� Many obstacles need to be surmounted for the 
extension.
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